
AFRL-IF-RS-TR-2001-67
Final Technical Report
April 2001

UPDATE ANALYSIS IMPLEMENTATION (UAI)
ADVANCED TECHNICAL PROTOTYPE (ATP)

PRC, Inc.

J. Huff and S. Ochsner

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

20010607 022

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-67 has been reviewed and is approved for publication.

APPROVED:

PATRICK K.MCCABE
Project Engineer

FOR THE DIRECTOR:

JOSEPH CAMERA, Chief
Information & Intelligence Exploitation Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFED, 32 Brooks Road, Rome, NY 13441-4114.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 0704-0188

™c,,p.rti„slMd.»f.nhi,c,,,fi.„,n,om.,,ni,?^

1. AGENCY USE ONLY (Leave blank/ 2. REPORT DATE

APRIL 2001

3. REPORT TYPE AND DATES COVERED

Final Apr 97 - Nov 98

4. TITLE AND SUBTITLE
UPDATE ANALYSIS IMPLEMENTATION (UAI) ADVANCED TECHNICAL

PROTOTYPE (ATP)

6. AUTHOR(S)

J. Huff and S. Ochsner

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

PRC, Inc.
1410 Wall Street
Bellvue NE 68005

5. FUNDING NUMBERS

C - F30602-95-C-0292
PE- 63726F
PR- 2810
TA- 01
WU-60

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFED

32 Brooks Road
Rome NY 13441-4114

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-67

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Patrick K. McCabe/IFED/(315) 330-3197

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) . ,„_Tm „. rmrommmt
The goal of the Update Analysis Implementation ATP is the integration of commercial off-the-shelf (COTS) and Government
off-the-shelf (GOTS) software that will provide for the simultaneous and transparent update of multiple heterogeneous
databases. The point of departure for the UAI ATP was the Query Support Processor (QSP) system developed for Rome

Laboratory under a previous effort.

H. SUBJECT TERMS
Heterogeneous Database Access and Update, Schema Management, Virtual Global Schema

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

32
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-891 (tli)
fnscribad by ANSIS«. 238.18
n„i.»i Monn Purieim. Prn. WHSininn. [let M

TABLE OF CONTENTS

Page

SECTION 1. INTRODUCTION
1.1 Purpose
1.2 Background
1.2.1 The Query Support Processor (QSP)
1.2.2 Update Analysis Implementation
1.2.3 Update Analysis Phase I Prototype
1.2.4 Update Analysis Phase fl Prototype

SECTION 2. UAI ATP ENVIRONMENT
2.1 System Overview
2.2 JADE User Interface
2.3 Request Routing
2.4 Request Execution
2.5 Schema Repository Manager
2.6 UAI Administration Tools
2.7 UAI Interprocess Communication

SECTION 3. OPERATIONAL ANALYSIS
3.1 Addressing System Limitations
3.2 Developments that Impact Data Kinetix

SECTION 4. DATA KTNETIX VERSION 2 TECHNICAL OBJECTIVES
4.1 Primary Objectives
4.2 Other Objectives

SECTION 5. DATA KINETIX VERSION 2 TECHNICAL APPROACH AND
ARCHITECTURE
5.1
5.2
5.2.1
5.3
5.4

Use of CORBA
Virtual Fusion

Virtual Fusion Example
Schema Repository Redesign
Standard Application Progräm Interfaces

1
1
1
1
3
4
6

8
8
8
9

10
11
12
12

13
13
13

15
15
15

17
17
17
18
21
23

LIST OF FIGURES

Page

1 UAI System 2
2 Request Routing Process 10
3 UAI ATD MetaSchema Repository Schema Diagram 11
4 Version 2 Architecture 17
5 Virtual Fusion Example 19
6 Row Mapping 20

7 Example Result 21
8 DK MetaSchema Repository Schema Diagram 22

11

SECTION 1. INTRODUCTION

1.1 Purpose

This Update Analysis Implementation (UAI) Advanced Technical Prototype (ATP) Final
Technical Report is submitted to Air Force Rome Laboratory (AFRL) in compliance with
contract F30602-95-C-0292. This report provides an understanding of the functional
capabilities delivered under the UAI contract, lessons learned from the effort, and a
description of the next iteration of the capability as Data Kinetix (DK) middleware under
the Databases for the 21st Century program.

1.2 Background

The goal of the Update Analysis Implementation ATP is the integration of commercial
off-the-shelf (COTS) and Government off-the-shelf (GOTS) software that will provide
for the simultaneous and transparent update of multiple heterogeneous databases. The
point of departure for the UAI ATP was the Query Support Processor (QSP) system
developed for Rome Laboratory under a previous effort.

1.2.1 The Query Support Processor (QSP)

Update Analysis is based on the earlier prototype for the Query Support Processor. QSP
provided a framework for addressing many of the problems of heterogeneous database
access through the use of an entity-relationship model schema repository. The schema
repository contained a description of network Schemas at both the physical and virtual
level In the QSP prototype, each data source available to the prototype s query
mechanism was described in the schema repository in its true physical organization. This
meta data was overlayed with a second description of data entities organized into topics
of related information without regard for their physical location or data representation.
This virtual name space, shown in Figure 1, UAI System, accomplished a very important
first step towards helping the user to deal with the vast amount of data available on a
network by providing a logical organization of related data. Additionally, the use of a
virtual name space solved the immediate problems of combining data from two sources,
resolving synonym and homonym confliction.

JADE
User Interface

1. Get Schema
Attribute Request

2. Return Schema/
Attributes

3. Query
4. Results

UAI System

Schema
Repository
Manager

(SRM)

Request
Routing

(RR)

Request
Execution
(RE)

Request
Execution
(RE)

I
Request
Execution
(RE)

Request
Execution
(RE)

Schema
Repository

SYBASE
Target

Informix
Target

ORACLE
Target

Other
Target

Figure 1, UAI System

Homonym conflict is the result of two entities which have the same physical name but
represent incompatible data, such as ID which refers to system identification in one table
and ID which refers to user identification in another table. These two fields obviously
refer to different information and within the QSP schema repository are correctly
represented as two distinct logical entities, preferably with descriptive names such as
SYSTEM_ID and USERJD. This allows the user to select the appropriate field for a
query. The definition of a homonym conflict is two entities that are incompatible in data
type and context but have the same physical names.

Synonym conflict is most common where databases have expanded their area of interest
and overlapped, or when the same data is stored in two different databases to support
different applications, sets of users, or performance requirements. The naming
conventions may be different based upon the administrative policy or the nature of the
database management system. A common example is case sensitivity. Over time, many
of these data entity names will be standardized by national agencies, but in many legacy
systems, and in differing versions of legacy systems that are concurrently active,
synonym conflict is common.

Following the development of the original QSP, the system limitations and lessons
learned were noted and many were resolved during the Update Analysis effort. One
limitation of QSP was the lack of true virtual data views. In the QSP approach, elements
from two sources could be combined in a logical data view, but the user was required to
supply join information as part of a query against the view. A second limitation was the
inability to deal with differing data representations (such as unit of measure) of the same
data in different sources. It was also noted during the original QSP effort that a
mechanism for automatically loading and keeping the information in the schema
repository synchronized with the physical database Schemas would be needed in future
versions. And finally, the original focus of QSP was heterogeneous queries. Since it was
designed to be a query only system, another effort would be required to enhance the
system to support updates.

1.2.2 Update Analysis Implementation

The Update Analysis Implementation prototype continued in the direction established by
QSP, resolving some of the issues that remained open at the conclusion of the QSP effort
to provide a more stable environment for multiple data source access and providing a
multiple target update capability. Our approach to implementing the Update Analysis
was based on a two-phase life cycle.

The Phase I Prototype for Update Analysis provided a stabilized baseline of data access
functions including the communications process, the DBMS isolation layer, the
repository access mechanism, and the request mechanism. Some of the capabilities
demonstrated for the Phase I Prototype included true logical data views, homonym and
synonym resolution, unit conversion with precision, datatype conversion, automatic
generation of transaction strategies, storage and reporting of historical transaction
performance data, an ad hoc query interface, and a peer-to-peer communication
substrate.

The Phase II Prototype demonstrated multiple database update capabilities. Three types
of multiple database updates are included: replicated update, global single entity update,
and update entity by view. The Update Release Queue application demonstrates how
multi-target updates can be displayed to a release authority for approval before execution.
The Automated Schema Synchronization feature demonstrates how the Update Analysis
Implementation Prototype can keep its schema repository current in a low-maintenance
environment by automated query of target schemas and reporting discrepancies to the
administrator. This allows the prototype to remain viable in a volatile data environment
without forcing local administrators to post their schema changes to the repository.

Enhancements to the schema repository table structure took the next step towards
removing the physical boundaries that make it difficult to compare data from one source
to another by creating virtual data views based on implied joins. Data views could be
created by a knowledgeable administrator using SQL "where" clauses to support the

view These "where" clauses were then stored in the repository as part of the view
definition. The SQL "where" clauses were then appended to a user's query of the view
transparently and incorporated into the subquery build process. However, simple SQL
statements could not solve all of the incompatibility problems between two sources that
could arise based on differences in unit of measure and data type. As a result, the SQL
statements had to be augmented with additional functions to obtain the necessary
conversion of data to a common representation that could be compared during the join

process.

1.2.3 Update Analysis Phase I Prototype

Many of the preliminary requirements of the UAI prototype were satisfied to some degree
by the enhancement of extensions to QSP that were developed under a PRCIRAD effort.
Some of these requirements reflect inputs from users and the Government after the QSP
final demonstration. Other requirements were suggested by PRC based on our own
growing understanding of the problems of presenting a unified view of data to the user.
An examples are the requirements for virtual views and synonym and homonym
deconfliction. The thrust of these requirements is aimed at resolving difficulties in
combining federated databases into one logical database discovered during the QSP

effort.

The original QSP prototype provided the preliminary framework for addressing many of
these problems through the use of an entity-relationship model for the schema repository.
The user organized data entities in whatever fashion made the most sense, regardless of
their true location and organization following a concept of virtual data views. The
repository resolved the location and true name of the elements of a user query and
generated subqueries against source databases accordingly. QSP automatically recognized
user queries that contained data from separate tables and performed user-specified joins
to effect the creation of a logical table. The intermediate solution was to present the data
entities to the user according to their physical organization but with logical names. The
end user had to create the logical view manually by creating cross database joins with key
elements for comparison.

The Update Analysis Phase I prototype provided an improved solution which was to
allow the administrator to build a virtual view based on implied joins which were stored
in the repository and added to an user query against the view. This way, a user sees a
collection of related data elements and creates a standard query. The query is submitted
to the parser, which recognizes that the elements of this view represent one or more tables
and appends the implied join sql to the user query. This approach shielded the user from
the very complex process of mapping data entities from one database to another, and
provided a truly logical organization of the network data so that it made more sense and
was easier to navigate.

Synonym conflict is most common where databases have expanded their area of interest
and overlapped, or when data is replicated in two different databases. The naming
conventions may be different based upon the administrative policy or the nature of the
database management system. A common example is case sensitivity.

Another example of conflicting entity names leads to the requirement for a data
conversion capability. Homonym conflict is the result of two entities which have the
same physical name but represent incompatible data, such as ID which refers to system
identification in one table and ID which refers to user identification in another table.
These two fields obviously refer to different information and within the QSP schema
repository are correctly represented as two distinct logical entities, preferably with
descriptive names such as SYSTEMJD and USERJD. This allows the user to select the
appropriate field for a query. The definition of a homonym conflict is two entities that
are incompatible in data type and context but have the same physical names.

The homonym deconfliction solution has side effects however, which were discovered as
the prototype was presented to the users. Sometimes, homonyms are really synonyms.
For instance, two databases contain the field "latitude", however in one database, latitude
is a six-character field and in another it is a seven-character field. The reason for the
longer field is that one database has concatenated a hemisphere designation onto the
latitude field. Obviously direct comparisons of the two fields will fail because they have
incompatible formats. The original QSP prototype was capable of recognizing this
situation, and since it could not join a seven-character field to a six-character field, the
two physical fields were represented by two logical fields, LAT_HEMIS, and
LATITUDE. However, there is a case for a query that joins the fields. The requirement
is for a conversion function to translate the format. A simpler example of homonyms
which are synonyms in disguise is ship length which is recorded as feet in one databases
and meters in another. Obviously, joins between feet and meters are nonsensical - the
data must first be converted to a common unit to be joined.

Under Independent Research and Development, extensions were developed to solve this
problem for the unit conversion issue. To do this, developers took advantage of the
entity-relationship organization of the schema and added unit type as an attribute on the
relationship between data elements and databases. The target fields can still be
represented as one virtual entity to the user, but the IRAD QSP extension recognizes that
the data is stored differently in the results of individual subqueries. When a user
generates a query that requires entities with unit type attributes to be combined, the data
is converted from one unit type to another as the final result set is compiled. The
conversion algorithm is stored in a file that is named according to the "from" and "to"
specifications of the unit designations, e.g., "feet_to_meters". This handles simple
arithmetic or datatype conversions. It cannot, however, handle field concatenation or
complex data mapping problems. (This level of complexity is more applicable to a data
exchange capability than a simple, multi-database retrieval function, and it will be

accomplished in the combination of data exchange and data retrieval capabilities for the
next version of the capability (see section 3)).

The UAI Phase I effort focused on integrating the capabilities developed under QSP with
the IRAD work and stabilizing the performance and error checking as a baseline to begin
the actual update implementation for Phase II. The enhancement work in the area of the
repository architecture during this first portion of the effort was accomplished with a
view towards later incorporation of the update parsing information and data, and
processing modeling information.

1.2.4 Update Analysis Phase II Prototype

The Phase II Update Analysis Prototype focused on three types of updates, the replicated
update, the global single entity update, and the update entity by view.

• The replicated update, updates multiple replicated tables which occur in
separate databases on the network. This is a straightforward
implementation that mimics a single database update with the added
safeguards of multi-phase commit and rollback to insure the synchronism of
the targets is maintained. This type of update is only useful to environments
that have a great deal of schema duplication and data replication since the
field to be updated and the constraints placed upon the update must occur in
every target database.

• The global single entity update allows the user to update the value of a
single field wherever it exists on the network. The Update Analysis ATP
software determines which tables contain the entity and performs all
updates accordingly. This type of update does not have a constraining
clause. The multi-phase commit and rollback processes are especially
critical for this type of update since it is likely to target several tables.

• The update entity by view capability is very complex and based upon the
concept of data views. Data views represent an assortment of data entities
from several different sources with a common focus. An update constrained
by the value of an entity, which is in the same logical view but a different
physical table, requires an implied subquery. The implied subquery extracts
the rows of the first entity that match the constraints of the second and
matches join keys. A second transaction performs the update against the
results of the first.

The ability to automatically query for and receive schema information from targets is
critical to a successful operational installation. The significance of increasing the
autonomy of the network data access and update server has become apparent by our
discussions with users and other contractors during the development of the QSP

prototype All vendors who are currently pursuing this type of research are concerned
about usability of a centralized schema repository to maintain concurrency with target
databases without the need for intensive database administration. Some of the solutions
proposed simplify the problem technically, but show little understanding of the dynamics
of an environment of diverse federated systems with user and administrative groups who
do not want to trade network data access for a loss of control over their own source of
data The Sybase solution, for example, requires all network database administration to
be accomplished through the network data access server. While this method would work
in theory, it is impractical from an operational standpoint where database administrators
want to continue to manage their own systems through the tools that they have been
trained to use. The Update Analysis ATP solution provides a process that periodically
queries each defined data source for its meta data. This information is compared to the
meta data stored in the schema repository, and any discrepancies are flagged and
presented to an administrator for resolution. The Metäschema Autosynchronization
Process can be used to initially load the physical schema as well as looking for changes
and recommending updates.

SECTION 2. UAI ATP ENVIRONMENT

2.1 System Overview

The Update Analysis Implementation Advanced Technical Prototype provides an
Application Programming Merface to support thetransparent retrieval and update of data
resident on connected data servers. Queries for composite data result sets are built from
topical data views that combine relevant data i entities independent of the physical
organization Or location Of the data. Updates against these views are translated to updates
at each source, constrained by the source's administrative controls: The UAI ATP
provides access to data through it's ad hoc query interface, or it can be used as database
access middleware that supports application or tool access to multiple data sources via its
Application Program Interface (API).

The UAI ATP provides a method by which a user or an application may view or update
the data stored in multiple heterogeneous databases as though it were integrated into a
single logical database. This logical database can be queried or updated by the user via
the Java Ad hoc Data Environment (JADE) user interface, or via the DK Application
Program Interface (API). This API exists in both C and Java versions. The UAI ATP
middleware accepts virtual queries from JADE, or through the API, and processes them
into subtasks that when executed, retrieves data from all databases that are required to
satisfy the original virtual query. Updates are processed with some constraints. Only
privileged users are permitted to request updates through UAI and all update requests are
held as Data Change Requests (DCRs) to be reviewed and approved by a responsible
producer before they are permitted to execute. The primary components of UAI are the
JADE user interface, the Request Routing module, Request Execution module and the
Schema Repository Manager. UAI also provides a set of repository administration tools.
This architecture is depicted in Figure 1, UAI System, and described in the following
paragraphs.

2.2 JADE User Interface

The purpose of the JADE User Interface is to allow a user to generate queries and updates
directly against the target databases without an intervening application. It is also a useful
tool for browsing the network database environment because it displays the user's view
of the data environment as though all the data were contained in a single database. There
is a point and click SQL generation window that guides the user in building queries
against their view.

The JADE User Interface displays the network data environment to the user in a virtual
organization that is independent of the physical scheme found in the target DBMS's.
Data elements are grouped into virtual tables or topics based on the classification scheme.
A simple interface leads the user through the selection of data elements and associated

information to query or update elements from a particular topic or group of topics. As the
user enters data, an SQL statement is generated. Advanced users may enter SQL queries
into a pop-up text window directly. When the query has been composed, the user
transmits it, and the query name appears in the status window. When the status window
registers the query as complete, the user may view the results.

Input to the JADE User Interface is the data entered by the user, which JADE translates
into repository requests or query/update statements. Repository requests, including the
GetSchema Request, GetAttributes Request and ValExec Request, are function calls to
the DK Interface Library. The library transmits the requests to the Schema Repository
Manager Module or to the Request Routing Module.

JADE receives virtual network schema information (Views) and attributes on data
elements (Entity Attributes) from the Schema Repository Manager, and receives result
data (Response Data) filtered through the Request Routing Module, and outputs this
information to the display.

2.3 Request Routing

The Request Routing (ReqRout) Function receives SQL statements and parses them to
perform request validation, virtual to physical element name mapping, SQL augmentation
to affect transparent cross-database joins, subquery generation, and task routing. The
UAI software then develops optimized cross database join strategies, and receives
composite result sets from the target nodes which it transmits back to the client. The
request routing process is shown below in Figure 2, Request Routing Process.

SRM

Execution
Histories

C5D
Logical
Queries
(SQL)

Validate syntax
and semantics

I
Translate logical
names to physical

names

I
Physical Schema

Domain
Validation

Generate
subqueries

Dispatch
subqueries

Subquery Tasks

Generate join
strategy

Task Updates
Request
Execution

Composite
results handling

Join Tasks

Results

User

Figure 2, Request Routing Process

2.4 Request Execution

The Request Execution and Data Access components handle the execution of queries
against each target database. In the optimal system configuration, a Request
Execution/Data Access module should exist on each remote DBMS node. This prevents
large amounts of data from being transported across the network unnecessarily. If a
particular subquery has a large result set, its node becomes the host for the join and
gathers smaller results to it to form a reduced composite result.

The queries received by Request Execution/Data Access are in the form of Task
commands sent out by Request Routing. Request Execution/Data Access has five service

10

options that respond to Task Commands: Subquery Execute, Join Execute, Send Data,
and Cancel Query, and an additional service option, Receive Data, that responds to join
data received from other nodes. As each task is completed, Request Execution/Data
Access generates a Task Update Request containing the task result size (if appropriate)
and completion code and forwards it to Request Routing. A local Active context table
contains information that allows Request Routing to keep track of query data until a Send
Data or Join Task Command is received. A Join Table keeps join parameters from a Join
Task Command until the results are received from the source node.

2.5 Schema Repository Manager

The Schema Repository Manager (SRM) provides services to the user, user applications,
and other UAI modules which allow access to the repository data shown in Figure 3, UAI
ATD Metaschema Repository Schema Diagram. The user or user application uses these
services to retrieve schema information for the subset of network data (View) for which a
user has access. The UAI processes call upon the SRM services to map virtual data entity
names to their physical names, and to retrieve information about a particular entity, such
as its location, unit of measure, context, precision, legal values, and data type. Other UAI
processes use the SRM to store queries which can be retrieved and resubmitted.

nrt_rane:vBictB-ß3
dass H: child)

3n_

i&I_
a« int
•Mhl . „,
atjrana vaoiarfS]
clzsJtdisO)

ad: irt
did it
dt vBcha-^S^
dass_M:cter(1)

Bt jians iarcha<S)
slassjd: dia-p)

»id rt

atid:int
Brt_ame:vB*dBrß9
slassjvt: ihal(1)

rid irt
Ivvariia-BEa

I

rW;M ,
fflSVS11*
cH kLU: int
dikLd: ht

SAOM fly ftSi

* H&M

m Q_ed: Ert
^p_ed: irt

dsGS_M: diaiffl

cass M: ctaid) .

RftTT
äÜinL
n»1 '"' _^ ~, d jume uacmrpe)
da»J*dia(1)

5SL.

at: varihai{256)
.dass Jw»: chii(1)

ffVuTCC»

ed_dema1_nems: wclB(2Sg
feisty e: wcha(25B
relive jJi*:wrdBrpiS)
legal^alues; vacherBS)
«ue^engs ißidiaiOBSr
ralivejredsfon varchat(Z6)
size: int
ciass_M: diar(1)

sdBma_parr»: wcha(32)
erTLranrB-vacha^2)
atojnalRnt

typs: wchaip?
nanat ardinS)
lerghtsmaTn
mend tnyirt

annv TADicncc
scrona jama va-d-ar(33
dbjHma w<tiai(33
anUBma vaichar(32)
IB jante \ar<ha<33

jTmfff »LIMN Iff
sdianajiarrB: wdiar(32
db_na-ne wrdia(32)

flV_"rSana var*a(32T
aid: snalBrt
cöid smallirl

dbjtama vaichaiC
iBjsmg vaidiaifc

tUtJlEE
djjiama vaicharp2)
fclrama yaictarp2)
ooH: srranmt

lypa vaehflrfE)

E&Ä21

rut: t My int

Figure 3, UAI ATD MetaSchema Repository Schema Diagram

11

2.6 UAI Administration Tools

A set of administration tools is provided with the UAI middleware system to help manage
the schema repository. These tools are used to define and administer the virtual database,
load new schema, provide enhanced dictionary information and to keep the repository
synchronized to the network's database environment. An automated schema
synchronization process is included that detects and helps resolve changes at the physical
database level.

2.7 UAI Interprocess Communication

The UAI ATP API provides a non-blocking, multi-threaded mechanism for clients to
submit queries against topical views using the windows-based event-driven model. The
client application submits a query, the address of a function to be called when results are
available, and the address of a function to be called if an error occurs. This interface can
also be used to retrieve information from the MetaSchema Repository (MSR).

12

SECTION 3. OPERATIONAL ANALYSIS

3.1 Addressing System Limitations

The Update Analysis Advanced Technical Prototype (UA/ATP), or Data Kinetix (DK) as
it has since been renamed, showed that it is possible to develop a database access
middleware that can successfully support applications in a multi-database environment.
However, as part of the development and implementation of Data Kinetix Version 1, a
number of physical system limitations have been uncovered that will need to be
addressed in Version 2. To address these limitations, Data Kinetix Version 2 will need:

The capability to efficiently handle large results when processing subqueries
and generating composite results.

• The ability to assemble query results that contain both relational and
non-relational data to include mechanisms for defining more complex
relationships.

• An architecture that can be easily integrated with other heterogeneous
access products, provides standard application interfaces, and is DII/COE
compliant.

Data Kinetix Version 1 has experienced some problems with handling very large result
sets that can be generated during the execution of subqueries and when compiling
composite results from multiple databases. The primary issue is the time it can take to
complete cross-database joins by sending subquery results from one database to another,
load the subquery results and re-issue a query to complete the join. The design for Data
Kinetix Version 2 will solve this problem using a different and much more efficient
approach for joining data from multiple databases and paging results on a demand basis.
This method, referred to as Virtual Joins, is described in section 4.

3.2 Developments that Impact Data Kinetix

The data that intelligence analysts require access to is changing to encompass a more
global view of information. This information is not usually available from a single
source or database and often includes relational data, images, graphics, sound, and video.
To accommodate this change, Data Kinetix will need to be enhanced to become more
object oriented so that data of different types can be more easily related and accessed. In
addition, more sophisticated approaches to data fusion will need to be developed in order
to present meaningful views of information from diverse sources. For these reasons, Data
Kinetix Version 2 will include a redesigned schema repository structure that will better
support the definition of relationships between diverse data. This new structure will also
improve performance when retrieving meta data from the schema repository.

13

t A loot w vPar«; more DBMS vendors have developed products that

become tmportantfor »*£^£^11 b^Lre flexible in its architecture so

capability to provide data to its fusion module.

14

SECTION 4. DATA KINETIX VERSION 2 TECHNICAL OBJECTIVES

4.1 Primary Objectives

The technical objectives for Data Kinetix Version 2 are focused on the three areas that
were identified as being problematic in Version 1 (see section 3). These objectives are to
provide a more efficient data fusion capability, support data objects, and provide standard
interfaces. In order meet these objectives, we have decided on an architecture that uses
CORBA as the framework for communication with client applications and a given
heterogeneous database access product.

4.2 Other Objectives

Other specific objectives are:

• The Virtual Data Fusion capability of Data Kinetix middleware will
perform cross-database joins in memory prior to extracting the required
rows specified by each subquery.

• The Virtual Data Fusion capability will extract data from each database a
page at a time, and return data to the client a page at a time. Page size will
be configurable. Clients can request all pages be sent one after the other or
on a per request basis.

• The schema repository structure will be redesigned to eliminate structures
that support extra levels of metadata that are no longer required. New
structures will be added to support the definition of relationships to non-
relational and non-databased information. The entire repository structure
will be further enhanced to improve performance.

• Provide client applications with a standard Application Programming
Interface (API) for communication with Data Kinetix to include:

JDBC interface for Java applications.

An ODBC interface for non-java applications.

• The JDBC and ODBC interfaces will be interchangeable with standard
JDBC and ODBC for direct database connections. An application connected
to this system can use a standard JDBC or ODBC connection with no loss
of functionality.

There will be a CORBA API available for applications to use directly.

• CORBA will be used for inter-process communications between Data
Kinetix services.

15

The JDBC interface will be packaged so that Java applets can be connected
with no special configuration using the ORB included with Netscape
Navigator 4.X.

The access mechanisms will not be DBMS specific.

The access mechanism will provide access to multiple databases using
commercial or Government products for heterogeneous database access.

16

SECTION 5. DATA KINETIX VERSION 2 TECHNICAL APPROACH AND
ARCHITECTURE

5.1 UseofCORBA

The objectives described in section 4 will be achieved in this effort by building CORBA
communications into the Data Kinetix middleware product. Applications will effectively
communicate with the database using a set of CORBA services in DK to parse virtual
queries, issue subqueries and fuse subquery results. Figure 4 shows the architecture of
the Data Kinetix Version 2 system.

Instantiated JDBC
objects

.ÄllllPWantiated ODBC
objects

Heterogeneous
Access

Figure 4, Version 2 Architecture

5.2 Virtual Fusion

The Virtual Fusion capability in Data Kinetix Version 2 will replace the current method
employed by Version 1 and will greatly reduce the amount of data that needs to be moved
in order to create a composite result. In DK Version 1, a separate Query Execution
Module (QEX) was installed on each database node that was part of the DK

17

configuration. Each QEX was responsible for executing its tasked subquery, reporting its
result size back to Query Status, and then either sending its results to another QEX or
receiving results from other QEX processes. The receiving QEX would then create a
temporary table for each result, load the results, and then re-query the database to join all
results together. This method, although reliable, could take a significant amount of time
when result sizes were large, and the entire process would have to complete before the
user would see any results returned. This approach also required that DK be granted
special privileges in each DBMS so that it could create temp tables and load data. The
overall architecture of DK also required that a module be installed on each database node.

With Virtual Fusion, all result processing will be done from a single module. Instead of
sending entire subqueries to each node, the VF module will query for only the required
keys. The key information will be compared in memory outside any DBMS environment
and a set of Link Vectors will be produced. These link vectors will then be used in the
creation of a virtual image that describes the entire composite result. Then, the VF
module will use the vectors to retrieve the required rows from each database a page at a
time. The advantages of this approach are that as soon as the first virtual page is
generated in memory, it can be retrieved and returned to the user allowing the user to see
results almost immediately regardless of the actual size of the results. Since results are
handled and processed a page at a time, system and network resources won't be over
taxed. This approach also simplifies the DK architecture so that in Version 2, a separate
module will not have to be installed on each database node and the DK system will not
need to be granted any special privileges for creating temp tables and loading them. DK
will also be able to query any database it can "see" without the need to install new
modules or do any extensive reconfiguration.

5.2.1 Virtual Fusion Example

The following example shows, in more detail, how the Virtual Fusion capability will

work.

The virtual query example in Figure 5 requests data from two databases
(MIDBandEWIR).

The Join in the query specifies key or keys from both databases (ELNOT
andELINT.NOTE).

18

select FQL BE_NUMBER, FQLEQUIP_CODE,
S03. ELNOT, S 03.TREE_NUMBER

from FQL, S03
where FQL ELINT_NOTE = S03.ELNOT
order by FQLEQUIP_CODE

Schema: 1.0 Schema: EWIR

FQL
BE_NUMBER
EQUIP.CODE
EQUIP_ID_NUMBER
LOCATK)N_TYPE

LAT LONG

EUNT NOTE

S03
ELNOT
TREE_NUMBER

FORMAT.

SUFFIX CODE

TEXT

Figure 5, Virtual Fusion Example

The subqueries generated for each database retrieve only the required keys.

Key comparison is done in module memory to produce a set of link vectors.

Link vectors are used to create a set of image vectors that map the virtual
image row to individual rows from each database as in the following figure.

19

Key Vectors Link Vector Image Vector
row row irow row row

1 1 1 1 1
1 2 2 1 2
2 1 3 3 1
2 2 4 3 2
3 1 5 5 3
3 2 6 7 4
4 1 7 7 5
4 2 8 9 4
5 3 9 9 5
6 3 10 2 1
7 4 11 2 2
7 5 12 4 1
8 4 13 4 2
8 5 14 6 3
9 4 15 8 4
9 5 16 8 5

Figure 6, Row Mapping

Virtual image rows are generated on demand; physical rows are retrieved
only as needed.

Virtual images can be paged for better management of huge composite

results:

Eliminates the need to retrieve all data at once

Only the rows needed to produce a virtual page are ever retrieved

20

Virtual Image

irow row row

6 7 4
7 7 5
8 9 4
9 9 5

10 2 1
11 2 2

BE_NBR EQPCD ELNOT TREE_NBR

/

V

Figure 7, Example Result

5.3 Schema Repository Redesign

In Data Kinetix Version 2, the schema repository will undergo a redesign to improve the
efficiency of queries for metaschema information. The redesign will reduce some of the
complexity that was in the Version 1 structure, but in so doing will also eliminate some
of the extensibility. The loss of extensibility is primarily in the capability to add new
entity types and relationship types dynamically. In the Version 2 schema, to add new
types, the table structure of the schema repository will have to be updated. This is not a
critical loss in capability since once defined, it does not need to change anyway. The
trade-off of improved performance over loss of extensibility will be worthwhile.

In the Version 2 schema we have created separate tables to manage information about
physical schema directly. For example there is now a table that describes databases, a
table for information about tables, and a table for element descriptions. Key set
information is now stored separately as well. New tables have been added to manage
views and queries against views. There is also a set of tables that describe schema
mapping that will be used for product generation. These tables are used to describe how
elements from one database map to elements of another database.

21

MRTT

reaL-element-i»«»: varehar<255)
datatype: varchar(255)
native unit: varchar(2S5)
legaLvalues: varehar(255)
value range: varehar(255)
native_precision: varchar(25S)
size: irrt
ctassjvl: char<1)

rktW p
tv:varchar(2S5) |

dassjvi: char(1)

RATT

attd:int

rttd:int
atjiame: varchar(32)
da*sa_lvl:char(1)

RAT
ikfcint

atid:int
ate varchar(25S)
dasajvt char(1)

NEXT10

ENTITY
$chema_name: vaichar(32)
ent_name: varchar(32)

ATTRIBUTE
schemajiame: varchar(32)
ent_name: varchar(32)
atid: smalBnt

name: varchar(32)
type: varehar(32)
length: smallint
mand:tinyint

CMTITY.TABIE-OEF

$chema_name: varchar(32) j
db name: varchar(32)
entlname: varchar(32)
tt>l_name: varohar(32)

ATTRIBUTE_COIUMN_OEF

schema_name: varcnar(32)
db name: varchar(32)
enLname: varchar{32)
tbl_name: varchar(32)
atid: smallint
colid: smallint

TABLE_OEF
db_name: varchar(32)
twlname: varchar(32)

COLUMNDEF.

db_name: varchar(32)
tbLname: varchar(32)
coiid: smallint

name: varchar(32)
type: varchar(32)
length: smallint
nulls: tinyint

1.1 /1.1 - 12:58:18 PM . 4/6/2001

Figure 8, DK Metaschema Repository Schema Diagram shows the layout of the

redesigned repository.

22

5.4 Standard Application Program Interfaces

The Data Kinetix Version 2 API will follow the JDBC and ODBC standards so that any
application that adheres to these standards can easily communicate with Data Kinetix.
This also provides applications the advantage of being completely independent of any
specific data access mechanism. Applications can also connect to a given database
directly using standard JDBC or ODBC drivers, although the application would be giving
up the option to obtain fused data from DK by doing so. However, standard JDBC/ODBC
drivers and DK JDBC/ODBC drivers can coexist within the same application. Raw
CORBA methods will also be available to applications. The full functionality of the
system will be accessible using any of these interfaces.

23

MISSION
OF

AFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

